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SUMMARY

In this paper an unstructured multigrid algorithm is used as an iterative solution procedure for the discrete
equations arising from an implicit time discretization of the unsteady Euler equations on tetrahedral grids. To
calculate unsteady ¯ows due to oscillating boundaries, a novel grid movement algorithm is introduced in which
an elliptic equation with a non-linear diffusion coef®cient is used to de®ne the displacement of interior grid
nodes. This allows large grid displacements to be calculated in a single step. The multigrid technique uses an
edge-collapsing algorithm to generate a sequence of grids, and a pseudo-time-stepping smoother. On the coarser
grids, no grid motion is used. Instead, surface normals are rotated consistently and transfer=interpolation weights
are based on the time-averaged grid co-ordinates. A 2D NACA0012 test case is used to validate the programme.
3D results are presented for the M6 wing and a full aircraft con®guration. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The eventual aim of this work is to model the unsteady aeroelastic behaviour of complex

con®gurations such as a complete aircraft. In moving towards this goal, the present work concentrates

on the prediction of the unsteady inviscid response to a body oscillating at low reduced frequency. An

example of this type of problem is wing ¯utter or the periodic pitching of an aeroplane.

The spatial geometry is discretized using an unstructured tetrahedral grid. To account for the

movement of some of the boundary surfaces, the surface and interior grid nodes are moved in a

consistent manner, keeping the connectivity of the grid ®xed. One of the key aspects of this paper is

the manner in which this consistent displacement is computed, enabling very large displacements to

be made in a single step.

A consequence of the low reduced frequency is that explicit methods have a stringent CFL

restriction which leads to very large CPU requirements.1 Following the approach of Jameson,2 this is

avoided by using an implicit time discretization, with the resulting equations being solved using a
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multigrid method. This employs pseudo-time marching purely as an iterative smoothing technique.

Particular attention is paid to two aspects of this procedure: the generation of a sequence of grids by

recursively `collapsing' edges of the original ®ne grid, and the formulation of the coarse grid discrete

operator when the ®ne grid is in motion.

Although an ef®cient solver is employed to minimize the computational cost of each time step,

CPU requirements for complex con®gurations are still very high. To reduce the otherwise high

computation time, a distributed memory parallel computer is employed as in Reference 3. The

ef®cient utilization of this hardware is very simply achieved by use of the OPlus library4 through the

straightforward insertion of OPlus FORTRAN 77 subroutine calls.5

The content of this paper is as follows: problem formulation, the grid movement algorithm, the

implicit solver, results, discussion and conclusions.

2. PROBLEM FORMULATION

The integral form of the unsteady compressible Euler equations for a deforming control volume is

d

dt

� � �
V �t�

u dV � ÿ
� �
@V �t�

�Fÿ u_x� � dA; �1�

where u� (r, ru, rv, rw, E)T is the usual vector of conserved variables, F� ( f, g, h)T are the inviscid

¯uxes and _x is the velocity of the moving boundary.

Using an unstructured tetrahedral grid with the ¯ow variables de®ned at the vertices, the ¯ux

integral for an individual tetrahedron labelled a can be de®ned as

Ra �
P
b
�Fb ÿ ub _xb� � Ab:

The summation is over the four faces of the tetrahedron. On each face Ab is the triangular face area

vector and the ¯uxes are based on an average of the values at the three corner nodes of the face.

Using this de®nition and a standard second-order backward difference for the time derivative gives

the algorithm

3
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2Dt
V nÿ2
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a
Da; jRa�U n� � 0:

The summation is over the cells surrounding node j. Vn
j is the nodal volume, de®ned as one-quarter of

the volume of the surrounding cells, at time level n. Da, j is a distribution matrix de®ning how the

residual Ra is to be distributed to the four corners of cell a. In a Galerkin approximation this would

simply be 1
4
I.

De®ning the non-linear operator M as

Mj�U n� � 3

2Dt
V n

j Un
j �

P
a

Da;jRa�Un�

and the right-hand-side source term as

f n � 2

Dt
V nÿ1

j U nÿ1
j ÿ 1

2Dt
V nÿ2

j Unÿ2
j ;

the equations for time level n can be written as

Mj�U n� � f n
j ; 8j for n � 1; 2; 3; . . . : �2�
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This non-linear system of coupled equations can now be solved by introducing a pseudo-unsteady

term

V n
j

@Uj

@t
�Mj�U � � f n

j �3�

and `time-marching' the solution using local pseudo-time steps Dtj until Uj converges to U n
j .

This is the basis of several approaches to solving the coupled implicit time-marching equations

(e.g. Reference 1). In this work we follow the ideas of Jameson2 in using a multigrid procedure to

accelerate this pseudo-time-stepping evolution to reduce the computational cost of each implicit time

step. Using an existing multigrid Lax±Wendroff solver which has proven to be computationally

ef®cient and robust for steady ¯ows around complex geometries, the distribution matrices in (2) are

taken to be Lax±Wendroff distribution matrices involving the local pseudo-time step Dtj, and the

pseudo-time derivative of Uj is approximated by a simple forward difference in pseudo-time. In the

quasi-steady limit in which the real time step Dt!?, the whole procedure for a single time level of

the unsteady evolution reduces to the standard steady state Lax±Wendroff multigrid algorithm.

A blend of second- and fourth-difference smoothing is added to the basic Lax±Wendroff algorithm.

Details of this are given in Reference 6, which shows the importance of constructing a fourth-

difference smoothing operator which does not affect linear functions on irregular meshes.

3. GRID MOVEMENT

The present work models the unsteady aerodynamic response induced by the periodic oscillation of a

complex con®guration. Consequently, the movement of the grid is predetermined and can be

expressed as

x�t� � xo � sin�ot��a�dx� � aÿdxÿ�; �4�
where

a� � 1
2
�1� sgn�sin�ot���; aÿ � 1

2
�1ÿ sgn�sin�ot���:

Here xo are the co-ordinates of an unperturbed grid and dx� and dxÿ are the maximum de¯ections at

the two extremes of the periodic motion. The connectivity of the grid used to discretize x(t) is taken

to be that of the original unperturbed grid xo. It is assumed that if x, x� dx� and x� dxÿ are all valid

grids in the sense of containing only cells with positive volume, then so is x(t); to date, this has

always been the case.

The displacements dx� are speci®ed on the surfaces of the complex body and then some heuristic

method is needed to assign values for interior grid points. One popular technique uses a spring

analogy,1 where each edge of the displaced computational mesh is modelled as a spring in

equilibrium. The mesh at the boundary is moved by the prescribed amount and the spring system is

solved to reach a new equilibrium. This is usually performed in conjunction with an explicit time-

marching procedure for the gas dynamics, which has a severe CFL restriction. Consequently, the

mesh need only be moved a cell thickness or so on the boundary. In the work in this paper, because an

implicit solver is being used, this time step restriction is avoided and the spring analogy was found to

be ineffective for the large perturbations required. An alternative was to move the mesh to the

required de¯ection via many internal steps, but this was thought to be unattractive, since the problem

would become even more severe for future viscous calculations in which the surface cells would be

extremely thin. Therefore the following alternative approach was developed.

TIME-ACCURATE SOLUTIONS ON UNSTRUCTURED GRIDS 1287

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1285±1300 (1997)



The displacement dx from grid xo is prescribed by the equation

H � �k�xo � dx�Hdx� � 0 �5�
with Dirichlet boundary conditions. The non-linear diffusion coef®cient k is a constant in each cell a
of mesh xo and is given by

ka�xo � dx� � 1

max�Vol�xo � dx; a�; E� :

The function Vol(x, a) returns the volume of cell a of grid x, while E is a small positive number needed

to prevent k from becoming negative. The basic idea behind this choice of k is that relatively small

cells will have a relatively large diffusion coef®cient, resulting in relatively small gradients in dx.

Therefore these small cells, which are usually very near to the surface of the body, tend to undergo

rigid body motion (a combination of translation and rotation) in common with the local surface

boundary. This avoids the possibility of small cells having very large changes in volume, even

leading to negative volumes, due to rapid variations in dx.

Equation (5) is discretized using a straightforward Galerkin ®nite element approximation on the

unperturbed mesh xo. The resulting non-linear system is solved using an underrelaxed Jacobi

iteration, with the non-linear k being evaluated at a previous iteration. For large boundary de¯ections

the initial guess to the Jacobi iteration is found from interpolation of the solution from a coarser grid,

which is used within the multigrid method. This greatly enhanced the robustness of this method. For

complex con®gurations the convergence of the Jacobi iteration can be poor, but with the multigrid

initial guess the perturbed mesh is valid (in the sense that all volumes are positive) long before

numerical convergence. Consequently, the iterative procedure is usually stopped after a ®xed number

of iterations.

Figure 8 (see Section 5.3) shows the grids resulting from a pitching of a civil aeroplane

con®guration by �15�. The grids all have 0�756106 cells. This code, like the ¯ow solver, has been

developed using the OPlus library and consequently executes in parallel. The time taken to move the

mesh is negligible in comparison with the CPU time of the unsteady Euler solver. The ®gure shows

how the clustering of cells is maintained during the mesh movement without excessive skewing of

tetrahedra.

This approach has links with the spring analogy grid movement,1 where the spring coef®cient is

scaled inversely proportionately to the length of an edge. The resulting computational molecule is

clearly linked with a diffusion operator. The success of the current approach is believed to be the

choice of k which is de®ned over cell volumes, which are used in the criteria for a valid mesh. In

contrast, the spring analogy uses only edges, which are not directly linked to the cells in any way

during the mesh movement process.

4. SOLUTION OF IMPLICIT EQUATIONS

4.1. Multigrid approach

As outlined in an earlier section, a multigrid procedure is used to iteratively solve the fully coupled

non-linear system of equations that arises from the implicit time discretization of the unsteady ¯ow

equations. Multigrid has mainly been used for structured meshes, but it is now being increasingly

used for unstructured meshes. The four basic components needed for multigrid are

(1) a prolongation operator IH
h which transfers corrections from coarse to ®ne grids

(2) a restriction operator IH
h which transfers residuals and solutions from ®ne to coarse grids
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(3) a coarse grid operator MH(QH) which is strongly related to the ®ne grid operator Mh(Qh)

(usually by being the same approximation operator but applied to a coarser grid).

(4) a smoother or relaxation scheme which damps high-frequency error modes.

Within a CFD framework the four major approaches to construct these operators are outlined

below.

1. An independent sequence of grids can be produced by a black-box grid generator and then

linked together. This has been adopted by several authors.2,3,7 This allows the ¯exibility of

using any grid-based solver; however, the generation of the sequence of grids is not automatic

and needs a tight coupling between the grid generator and the multigrid method.

2. An increasingly popular approach is agglomeration, which has been successfully applied to very

complex problems.8 Here a coarse grid matrix is constructed by the `agglomeration' of ®ne grid

volumes. This is completely automatic but is somewhat reliant on an edge-based data structure.

3. Another strategy is to produce ®ne grids from a coarse grid, preferably in some sort of adaptive

re®nement procedure,9. This seems an attractive proposition, but, this requires a strong coupling

between the grid re®nement and the con®guration surface spline de®nition.

4. The philosophy adopted here, as in Reference 10, is to use a point removal algorithm which is

completely automatic, needing no interaction with the grid generation process. The resulting

grid sequence can be used by any grid-based algorithm, including those which use an edge-

based data structure.

The methodology used to remove points is very straightforward and is based on `collapsing edges';

see Figure 1. Given an edge with nodes i and j of a mesh, the algorithm proceeds as follows.

1. Construct T, a list of all cells connected to the current edge.

2. Construct F, a list of the external faces of the set T.

3. Reconnect the nodes in the faces of F with a new node xk, if all tetrahedra have positive volume,

otherwise reject the edge collapse as being invalid.

Figure 1. Edge-collapsing procedure
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The choice of xk depends on the location of the two nodes. If xi and xj are both interior nodes, then

xk is de®ned to be the average of the two. On the other hand, if xi is an interior node and xj lies on a

boundary, then xk is set equal to xj to preserve the geometry of the boundary surface as much as

possible. Extending this idea to include situations in which a node may lie on more than one boundary

surface (such as at a wing=fuselage junction), the general rule is to count the number of surfaces on

which each node lies. If they are equal, then xk is assigned the average co-ordinates; if they are

unequal, then xk is assigned the co-ordinates of the node lying on more surfaces. An example of the

grids produced near boundaries is given in Figure 9 (see Section 5.3).

It now remains to choose which edges are collapsed. This is done with a simple strategy which

begins by `colouring' all nodes so that no two nodes of the same colour are connected by an edge.

(This is very similar to the colouring of edges for vector computations to avoid indirect addressing

con¯icts in updating nodal data.)

1. For all nodes i of the ®rst colour, collapse the shortest edge connected to i.

2. If the number of nodes remaining is still above the desired level, repeat with the next colour if it

exists, otherwise recolour and begin again.

The motivation behind colouring the nodes is to visit nodes, and therefore remove nodes,

uniformly over the mesh. The shortest edge is chosen to make the collapsed grid as isotropic as

possible. Isotropic grids, without any highly stretched cells, enable the smoother to damp equally in

all directions, hopefully ensuring fast and robust multigrid convergence.

At the end of this point removal method, for each coarse grid point j a list of all the ®ne nodes that

have been collapsed onto the coarse node RH
j is constructed. Using this information, the restriction of

a node-based quantity fj is de®ned as the volume weighting

fH
j :�

P
i2RH

j

V h
i f

h
iP

i2RH
j

V h
i

and the prolongation is the simple injection process

8i 2 RH
j ; fh

i :� fH
j :

The mesh quality of the coarse grid can be poor, but to date it has not been necessary to implement

grid-smoothing techniques, such as face swapping, for the coarse grids. These are only used to

accelerate the convergence of the ®ne mesh computation, and the multigrid algorithm has proven to

be suf®ciently robust to cope with the coarse grids. For steady state applications a standard FAS

multigrid method is used with the restriction and prolongation operators de®ned above and with a

coarse grid operator which is similar to the ®ne grid operator except in two respects. One is the use of

a ®xed level of second-difference smoothing instead of the adaptive blend of second- and fourth-

difference smoothing. The other concerns the imposition of ¯ow tangency at surface grid nodes. On

the ®ne grid a local surface normal is calculated from the surrounding boundary faces, but on the

coarser grid levels it is obtained by restriction from the ®ne grid because of the poor quality of the

surface de®nition on the coarse grids (see Figure 5 in Section 5.2).

4.2. Treatment of moving meshes

The previous subsection has described the generation of a sequence of ®xed grids with

prolongation and restriction weights relating variables between grids. When the ®ne grid moves, the

most natural treatment is to move the coarse grids by restricting the ®ne grid de¯ections, thus relating
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the ®ne and coarse grids at their time-averaged position to de®ne the coarse grid co-ordinates at all

times during the oscillation. In this manner the coarse grids oscillate consistently with the ®ne grid.

During a multigrid iteration for each implicit time step the ®ne grid residual is transferred onto the

coarser grid, the coarse grid equations are solved (applying the multigrid recursively on even coarser

grid levels) taking into account the motion of the coarse grid and then ®nally the changes on the

coarse grid are interpolated back onto the ®ne grid.

For small-amplitude oscillations this procedure works well, but at large amplitudes there can be

problems with the volume of some deforming coarse grid cells becoming negative. This can lead to

complete failure of the multigrid iterative solution procedure.

To overcome this problem, the multigrid iteration on all coarse grid levels is performed on ®xed

grids corresponding to the time-averaged position. To understand why this is justi®ed, it is necessary

to consider the discrete operator on the moving ®ne grid as operating on the unsteady ¯ow variables,

grid co-ordinates and grid velocities, M(U, x, _x). For small-amplitude oscillations about the time-

averaged solution this operator can be approximately linearized, giving

M � @M
@U

~U � @M
@x

~x� @M
@_x

_~x;

where ~U , ~x and _~x are the unsteady perturbation quantities and the Jacobian matrices @M=@U, @M=@x,

@M=@_x, are evaluated on the stationary time-averaged grid with the time-averaged ¯ow variables.

On the coarser grids, using the FAS multigrid method, the equation to be solved is

MH �UH � � MH �IH
h Uh� � IH

h � fh ÿMh�Uh��; �6�
where fh7Mh(Uh) represents the remaining residual on the ®ner grid and IH

h Uh is the transferred

solution onto the coarser grid which is used as the starting point for the coarse grid computation. If

the coarse grid operator MH is taken to be the same as the ®ne grid operator on a moving coarse grid,

then using the linear approximation derived above, the same grid motion terms appear in both

MH(UH) and MH(IH
h Uh) and so cancel. Hence, to linear order, the same result is obtained by keeping

the coarse grid ®xed.

Even for large-amplitude oscillations of the ®ne grid this procedure of solving the coarse grid

multigrid equations on the ®xed grids always accelerates the convergence of the overall iterative

solution of the implicit ®ne grid solutions. It obviously avoids the possibility of negative cell volumes

on the coarser grids and cannot affect the ®nal converged solution that is obtained on the moving ®ne

grid.

5. RESULTS AND DISCUSSION

5.1. NACA0012

The ®rst case studied is a pitching NACA0012 aerofoil with freestream conditions: a� 0�016,

M?� 0�755. The aerofoil is rotated about a quarter-chord to �2�51� with reduced frequency

o� 0�1682. The sequence of grids used for this calculation can be seen in Figure 2. The ®ne grid was

generated by extending a 2D triangular grid into a 3D prismatic grid that was then split into

tetrahedra. Coarse grids were generated by removing three-quarters of the ®ne grid points. The

sequence is summarized in Table I.

Figure 3 shows the lift coef®cient plotted against the time-dependent angle of attack a(t) for four

periods, with 64 time steps per period. Clearly a periodic solution has been achieved. For this case the

experimental data from Reference 11 are shown; this level of agreement is typical for an inviscid

approximation.12
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Figure 2. Grids for NACA0012 calculation
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Table I

Grid 1 2 3

Cells 51690 12933 2432
Nodes 13326 3256 806

Figure 3. Lift variation for NACA0012 calculation

Figure 4. Unsteady lift variation for eight, 16, 32 and 64 time steps per period

Table II

oDt=2p 1=8 1=16 1=32

E 0�0451 0�0128 0�00283
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Figure 5. Grids for M6 wing calculation
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For this test problem a study was performed to examine the convergence as the size of the implicit

time step is reduced. Figure 4 shows the ®nal periodic solution for calculations with 8, 16, 32 and 64

time steps per period; the 32 and 64 time steps per period are indistinguishable to plotting accuracy.

To quantify the order of convergence, the r.m.s. change in the unsteady lift as the time step is halved,

E � o
2p

�2p=o

0

�CDt
L �t� ÿ C

Dt=2
L �t��2 dt

� �1=2

;

is presented in Table II. The results con®rm the second-order convergence expected because of the

second-order backward time discretization.

5.2. M6 wing

The second test case is a pitching M6 wing with freestream conditions: a� 3�06, M?� 0�84. For

this case the unsteady oscillation is a rotation of �5� about an axis perpendicular to the symmetry

plane at the root mid-chord. The grid sequence was generated by removing seven-eights of the ®ner

grid points; these grids are shown in Figure 5 and are summarized in Table III.

This case was run with a range of reduced frequencies, o� 0�1, 0�02, 0�004, all with 16 time steps

per period. All frequencies achieved a periodic solution after four periods. Figure 6 shows the

periodic lift variation plotted against sin(ot) for all frequencies. The expected trend is observed, with

a reduced level of hysteresis as the frequency is reduced. In the quasi-steady limit there would be no

hysteresis, with the lift coef®cient being a direct function of the angle of attack.

The convergence history for the ®rst 17 time steps is shown in Figure 7. Here a work unit is

equivalent to a single-grid relaxation. Robust convergence of four orders of magnitude is achieved

within 400 single-grid iterations.

Figure 6. Lift variation for M6 wing calculations
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5.3. Aircraft con®guration

The ®nal calculation demonstrates the ability to perform calculations on a complex con®guration.

The rotation of the aeroplane is less severe than that shown in Figure 8, only �2�5�, as the Euler

solver will not give sensible solutions at high angles of attack at which viscous effects will prevail.

The grid sequence used for this calculation is shown in Figure 9 and summarized in Table IV.

Figure 10 shows the lift (evaluated in grid units) plotted against non-dimensional time for a

reduced frequency of 0�01 (based on a root chord of 333 grid units); clearly a periodic solution has

been obtained. For each physical time step the residual was reduced by three to four orders of

magnitude, which took between 10 and 20 min elapsed time on an eight-processor IBM SP1.

6. PARALLEL COMPUTING

Despite the use of the multigrid procedure to solve the implicit equations at each time step of the

unsteady ¯ow calculation, the overall computational requirements to compute a few periods of

oscillation are still very substantial. As a consequence, practical calculations for complex geometries

require the use of parallel computing to produce results within an acceptable time scale. This is true

both for `production' calculations and during code development.

For the work in this paper the code has been developed and maintained using the OPlus parallel

harness,4 which allows a single source FORTRAN code to be executed on a wide variety of parallel

hardware; the calculations in this paper were performed on an eight-processor distributed memory

IBM SP1 and a four-processor shared memory Silicon Graphics Power Challenge. Although the same

source code can also be compiled and executed sequentially, the code was written from the start using

Figure 7. Convergence history for ®rst 17 time steps for M6 wing problem

Table III

Grid 1 2 3

Cells 251721 32294 3277
Nodes 46331 5578 671
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Figure 8. Left, aeroplane con®guration; right, detailed ®xed cut through wing pylon nacelle; top, x� dx� ; middle, x7 dxÿ ;
bottom, x
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Figure 9. Sequence of grids for aircaraft con®guration
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the OPlus harness, and almost all algorithm development and code debugging were performed using

parallel computations. Sequential computation for realistic 3D grids would have severely slowed the

development process.

The distributed visualization software pV313 was vital in the development process. By interfacing

it to the distributed OPlus computation, it was possible to observe the evolution of the solution as it

was being computed in parallel.14 This was invaluable in understanding the behaviour of the

computation and thereby improving the numerical smoothing formulation and the multigrid

algorithm.

Parallel ef®ciency statistics have not been generated for the computations in this paper. The

parallel ef®ciency for steady state multigrid calculations has been demonstrated previously for both

the IBM SP1 and the Silicon Graphics Power Challenge.3

7. CONCLUSIONS

A mesh movement algorithm has been introduced that robustly moves complex grids through large

de¯ections. This is based on a non-linear elliptic PDE with a diffusion coef®cient that is inversely

proportional to the cell volume on the displaced grid.

A point removal strategy based on collapsing edges is demonstrated to be a robust and automatic

way of producing grid sequences suitable for use in multigrid. This strategy has the ¯exibility of

Table IV

Grid 1 2 3

Cells 746227 94821 9991
Nodes 137094 16308 2025

Figure 10. Unsteady lift for aircraft con®guration
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being applicable to any grid-based smoother. Here it is shown to be an ef®cient tool for solving

equations arising from the implicit time discretization of the Euler equations.

To avoid problems due to negative cell volumes, the coarse grid operator is applied on the

stationary time-averaged grid for which all cell volumes are positive. For small amplitudes of

unsteadiness this is shown to be mathematically equivalent to a coarse grid operator de®ned on the

deforming coarse grid.

Unsteady solutions are compared with experimental data for an oscillating 2D NACA0012

aerofoil. Further tests on an M6 wing and an aircraft con®guration illustrate the applicability of the

method to 3D and complex geometries.

ACKNOWLEDGEMENTS

This work was performed within Oxford Parallel with ®nancial support from Rolls-Royce plc, DTI

and SERC. We gratefully acknowledge the use of the unstructured grid generator of Jaime Peraire

and Joaquim Peiro and the visualisation software Visual3 and pV3 of Bob Haimes (MIT).

REFERENCES

1. R. D. Rausch, J. T. Batina and H. T. Y. Yang. `Three-dimensional time-marching aeroelastic analysis using an
unstructured-grid Euler method', AIAA J. 31, (1993).

2. A. Jameson, `Time dependent calculations using multigrid, with applications to unsteady ¯ows past airfoils, wings, and
helicopter rotors', AIAA Paper 91±1596, 1991.

3. P. Crumpton and M. B. Giles, `Aircraft computations using multigrid and an unstructured parallel library', AIAA Paper 95±
0210, 1995.

4. D. A. Burgess, P. I. Crumpton, and M. B. Giles, `A parallel framework for unstructured grid solvers', in S. Wagner, E. H.
Hirschel, J. PeÂriaux and R. Piva (eds), Computational Fluid Dynamics '94, Wiley, Chichester, 1994, pp. 391±396.

5. P. Crumpton and M. Giles, OPlus Programmer's Guide, Rev. 1.0, Oxford University Computing Laboratory, 1993.
6. P. I. Crumpton, `An ef®cient cell vertex method for unstructured tetrahedral grids', Proc. ICFD Conf., Oxford, 1995.
7. D. J. Mavriplis, `Three dimensional unstructured multigrid for the Euler equations', ICASE Rep. 91±41, 1991.
8. V. Venkatakrishnan and D. J. Mavriplis, `Agglomeration multigrid for the three-dimensional Euler equations', ICASE Rep.

94±5, 1994.
9. T. Barth, `Randomized multigrid', AIAA Paper 95±0207, 1995.

10. E. Morano, H. Guillard, A. Dervieux, M. P. Leclercq and B. Stouf¯et, `Faster relaxations for non-structured multigrid with
Voronoi coarsening', ECCO MAS 92, Vol. 1, 1992, pp. 69±74.

11. R. H. Landon, `Compendium of unsteady aerodynamic measurements, AGARD Rep. 702, 1983.
12. M. Meister, `Development of an implicit ®nite volume scheme for the computation of unsteady ¯ow ®elds on unstructured

moving grids', Proc. ICFD Conf., Oxford, 1995.
13. R. Haimes, `pV3: a distributed system for large scale unsteady CFD visualisation', AIAA Paper 94±0321, 1994.
14. P. I. Crumpton and R. Haimes, `Parallel visualisation of unstructured grids', Tech. Rep. NA95=21, 1995.

1300 P. I. CRUMPTON AND M. B. GILES

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1285±1300 (1997) # 1997 John Wiley & Sons, Ltd.


